Release v2.0 of Nexyad VisiNex Onboard

NEXYAD VisiNex Onboard v2.0 is now available on RT-Maps (by Intempora).
It comes with local Visual Quality Score (VQS) figured by colors :
Green is high, orange is medium, red is low.
See Demo film below on foggy weather condition :




USING NEXYAD ADAS MODULES
FOR AUTONOMOUS VEHICLE AND SAFETY/RISK ESTIMATION



USING NEXYAD ADAS MODULES FOR AUTONOMOUS VEHICLE AND SAFETY/RISK ESTIMATION

by NEXYAD


INTRODUCTION

The company NEXYAD developped software modules for Advanced Driver Assistance Systems :
. RoadNex (Road detection) : lane detection, detection of the borderlines of drivable area in the lane, detection of the surface of drivable area in the lane.
Sensor : camera (color)

. ObstaNex (Obstacles detection) : obstacles detection (if they have a vertical dimension or – inclusive – if they have their own movement)
Sensor : camera (N&B or color), accel, gyro

. VisiNex onboard (weather visibility measurement) : visibility measurement (quality and distance)
Sensor : camera

. SafetyNex : onboard road safety / risk estimation
Sensor : navigation map, gps, accel or car speed

Those modules were made to develop very efficient ADAS.
There are many ways of comining those modules, depending on the function that should be developped.

LANE KEEPING AND AUTOMATIC BRAKING : FOR CAR MANUFACTURERS AND TIER ONE COMPANIES

For this function, modules may be integrated in a rather complex way :
Nexyad Suite 1
Such an application needs to know where it works and where it doesn’t work (reliability). For that, VisiNex helps because it measures weather visibility and the nit is possible to know in which context artificial vision algorithms are efficient or not. It is also possible to switch setting parameters of artificial vision based algorithms using visibility characteristics, in order to expand the range of good performance of the global system (this is robustness).

NEXYAD applies a validation methodology called AGENDA (see papers in CESA Automotive 2014 in Paris and in SATETYWEEK 2015 in Aschaffenburg). This methodology is the onlt approach that allows to know what the system is supposed to do in a functional point of view, with measurable characterisctics of road scenes.
NEXYAD of course uses the NEXYAD ADAS validation data base : a part of this validation data base for artificial vision-based ADAS will be soon online for free (usable by every researcher or engineer in the world).

Note : the AGENDA methodology also provides a method to measure the similarity of a road scene in the validation data base anda current road scene : this is applied to estimate a confidence score.

SAFETY / RISK ESTIMATION FOR INSURANCE COMPANIES

SafetyNex measures the adequation of driving to road infrastructure characteristics.
It generates then a risk if the driver goes too fast when approaching a crossing road or a dangerous curve.
Of course, a poor visibility should lead the driver to drive slower.
In addition, there could be auxiliary inputs that would tell SafetyNex if there are obstacles on the pathway :
Nexyad Suite 2
This scheme is the same than the previous one but the outputs of RoadNex and ObstaNex are used INSIDE the scheme (they don’t provide an output of the global scheme).

DEMOS OF NEXYAD MODULES



REFERENCES

Validation of Advanced Driving Assistance Systems by Gérard Yahiaoui & Nicolas Du Lac
CESA Paper by Gérard Yahiaoui & Pierre Da Silva Dias
Road detection for ADAS and autonomous vehicle
Using the NEXYAD road detection (RoadNex) to make obstacles detection more robust
Real Time Onboard Risk Estimation Correlated with Road Accident
Visibility Measurement for ADAS and Autonomous Vehicle

Visibility Measurement for Road Safety

Visibility Measurement for Road Safety by NEXYAD

INTRODUCTION

Visibility is one of the structural elements of road safety. Indeed, the sense of sight is the only one that let us perceived the future path of the vehicle and then let us act on it : the driver “can see” in front of the vehicle, he predicts where the vehicle will go, and he can act on the controls (brake, steering wheel, …) in order to control the trajectory.

No other way allows us to anticipate.

If we model the task of driving with an automatic control engineering scheme, then we can notice that vision is used quite everywhere :

Set Point of Trajectory Modification

Vision plays a critical role in driving task, and what sizes the efficiency of this sense is « visibility ».

Visibility can be affected by many kinds of factors:
. the absence or insufficience of light (that is why the infrastructure is sometimes illuminated at night, and why vehicles are equipped with lighting.
. rain deposited on the windshield (that is why vehicles are equipped with wipers)
. mist on the windshield (that is why vehicles are equipped with demisting systems)
. humidity, fog or mist suspended in the air in the road scene.

Experts of road infrastructure add elements to enhance the visibility of the path :
. lane markings (white lines), reflective elements.

Similarly, automobile experts equip their vehicle with systems enabling them to improve visibility for the driver, but also allowing the vehicle to be more easily seen by other drivers.

We then understand that measurement of visibility is an important area of potential improvement of road safety in via ADAS.

VISIBILITY MEASUREMENT

The founders of the company NEXYAD have been working since the 80s on the measurement of visibility, early on military applications.
Indeed, it is the military who have studied since the 60’s which criteria allow human visual perception system to detect objects on their clutter.

For the military, the constant search for stealth (camouflage, for example) requires modeling the performance of the detection by human, depending on the light of a scene in the visible wavelength.

The work carried out tests on panels of thousands of soldiers, and led to predictive models for human vision of the ability to detect objects or not, depending on the image quality.
NEXYAD is one of the very few companies in the world to hold these models and have experience of their implementation for more than 20 years.
In simplified terms, we can consider that our eyes and brain need, depending on the size of the objects to be detected, a different contrast level.
We can then compare the contrast available in a scene (eg a road scene) with needed contrast to detect, , for each size of objects.

The comparison results in two scores :
. the apparent size of the smallest detectable object : as the apparent size of an object decreases with distance, it can then be deduced the maximum distance of detection for a reference object (a car, a truck, a pedestrian). Distances will obviously be different for every object because they don’t have the same size. Johnson criteria give let also estimate the maximum distance for object recognition, and the maximum distance for object identification.
. ease of interpretation of the visual scene. NEXYAD summarized this in a score computed from available and needed contrast: the Visual Quality Score (VQS).

This measure of visibility enables automotive application objectify the subjective. NEXYAD has developed two product lines from the same technology :

. a visibility test bench : VisiNex Lab https://nexyad.net/Automotive-Transportation/?page_id=159

VisiNex Lab

Place a vehicle on a test bench and VisiNex Lab measuring visibility among time. If there are disturbs of visibility from rain, for example (using NEXYAD RainNex rain machine, or another rain machine), then we see scores for degraded visibility. If one starts the vehicle visibility restoration systems (eg in the case where the disturbance is the rain : the wipers), then we measure the performance of the visibility restoration.
VisiNex Lab is used by the automotive industry and is still the only tool for measuring the performance of wipers, demisting system, lighting system, …

. an embedded module for ADAS : VisiNex Onboard https://nexyad.net/Automotive-Transportation/?page_id=438
VisiNex Onboard measures the image quality and predicts the detection power of the driver and onboard artificial vision modules. So we get a rating of confidence for artificial vision systems.
Again, NEXYAD is the only non military company to dispose of this technology.

Road Scene

CONCLUSION

Every tier one company or car manufacturer should use NEXYAD modules VisiNex in order to measure performance, robustness, and reliability of their wipers, lighting, and of their camera-based ADAS.
VisiNex Onboard is currently under implementation into the asynchronous real time framework RT-MAPS.

For more information : sales@nexyad.net

Visibility Measurement for ADAS and Autonomous Vehicle

Visibility measurement for ADAS and Autonomous Vehicle
By NEXYAD

Advanced Driver Assistance Systems (ADAS), and partial or total delegation of car control systems will integrate more and more cameras. Those cameras are used to capture video and images are inputs for obstacle detection algorithms, road detection algorithms, detection of pedestrians systems, …

However, a camera can “see” only under certain conditions, and the algorithms used to exploit image need a certain level of image quality. It is possible that some algorithms test themselves if they are in a case of good image quality or not, but in the general case, they don’t, and it is then prudent to have a qualification system that is independent of the detection systems.

The company NEXYAD has worked for years on atmospheric visibility measurement for military application, and was able to develop predictive models of the ability for a human to detect objects. This work can be easily set to pass from a performance prediction of the human vision to a prediction of performance for a machine vision system.

The models consist in comparing the contrast in the scene with the required contrast for detection and / or pattern recognition.
Such a system requires that is respected a compromise between several characteristics of the image:
. number of different gray levels (for a digital camera, it depends on the number of bits)
. size of the objects to be detected
. contrast of objects from their background

Note for Automotive engineers : a performance specification for a camera-based detection system, without giving the minimum contrast, le maximum number of pixels, the number of bits … does NOT have any sense. It is important to know that fact in order to make applications that work and application that know when they work.
For instance, we are all able to detect stars in a dark night sky : the size of objects is very small, the number of Grayscale is very low (pure black and pure white), and the contrast of objects from the background is huge.

Contrast

Similarly, we are able to distinguish clouds over gray sky : the size of objects is very large, and even on edges there is no detail (no high frequency / contours), and the number of different gray levels is very large (gradual grey scale from black to white).

Clouds

Between these two extremes are all possible cases, and in particular with all traffic scenes that may vary greatly from one to another :
. sunny day, overcast day, dark night, undergrowth, sunset, night in headlights, fog, rain, etc …

Visibility_Measurement

In addition to these technical compromise, there are criteria (eg criteria Johnson) that allow to objectify the subjective.

NEXYAD has developed a tool called VisiNex that integrates models and criteria described above, which led to two products:

. VisiNex Lab : test bench for visibility measurement. It sets a vehicle with calibrated visibility disturbances (rain machine, fog machine, …), and VisiNex Lab measures the evolution of the available visibility during the disturbance and during activation of visibility restoration systems (lighting, demisting, wiping, …).
VisiNex Lab is used to adjust the rain sensors, the wiper systems, the lighting systems. VisiNex is a world leader on this type of use : https://nexyad.net/Automotive-Transportation/?page_id=159

VisiNex_Banc

. VisiNex Onboard : NEXYAD took his model into onboard applications to apply and qualify road visibility along the route running (important place to qualify for the road safety applications).
VisiNex Onboard is currently being integrated into the framework for asynchronous real-time applications development RT-MAPS, and will soon be in the NEXYAD vision modules pack for ADAS and driving delegation applications.

VisiNex Onboard
Standard visibility on a highway scene.                             Degraded visibility when approaching a tunnel

VisiNex Onboard can be used in automotive application on the following topics :
. visibility measurement to control Visibility restoration systems (wiper, lighting, …)
. qualification of visibility conditions where an obstacle detection or road detection system will work properly.

The second point is important because road safety applications require to maximize the reliability of vision systems.

To know more :sales@nexyad.net

Presentations of NEXYAD at SafetyWeek in Germany

At the safety week symposium in Aschaffenburg (Germany), NEXYAD presented :

. A paper about ADAS validation : methodology and tools
. The products on the booth : RoadNex (road detection), ObstaNex (Obstacles detection),
VisiNex Onboard (visibility measurement), SafetyNex (estimating safety level of driving).





Presentation of NEXYAD products for European Car Industry (February 4, 2014)

Here are the powerpoint sildes of presentation of NEXYAD Automotive & Transportation : PDF Here

– Visibility measurement in your lab (Testing Application : for wipers, washer, windshield, rain sensor, lighting, demist, …) VisiNex

– Onboard Software (Artificial Vision) blocs for your ADAS development : (road detection) RoadNex, (road safety assessment) SafetyNex, (drowsiness detection) DrowsiNex, (visibility measurement) VisiNex Onboard, (obstacle/pedestrian detection) ObstaNex

Poster publication of the Visibility measurement research project (SURVIE – Mov’eo) conclusions at the “carrefours du PREDIT”, in Paris, Palais Broigniart (October 7-8, 2013)

The project SURVIE was headed by NEXYAD with the research partners AXIMUM, CETE, IFSTTAR, OKTAL, SAINT GOBAIN, VALEO.

The goal of this project was to validate standard measurement protocols for different testing usages of the test bench tool VisiNex (developed by NEXYAD : click HERE to know more) : measurement of the performance of every system in a car that was made to restore visibility : lighting, wipers, demist, defrost, hydrophobic windshield, …

SURVIE was a collaborative research program of the competitive cluster Mov’eo.






NEXYAD joins the business cluster ITS Infra (Mov’eo) / NEXYAD rejoint le Groupement de Pme ITS Infra (intégration des technologies de l’information dans les infrastructures routières) du pôle de compétitivité Mov’eo (September 23, 2013)

NEXYAD joins the hich tech SMEs business cluster ITS Infra (Information Technologies for intelligent road infrastructures) :
. Visibility measurement / mesure de la visibilité
. Bad weather identification using artificial vision based-systems (rain, fog, smoke, …) / identification des intempéries par caméra (pluie, brouillard, fumées, …)
. Smart camera based application / applications des cameras intelligentes
. Statistics and data analysis on the road traffic / statistiques sur le traffic routier

This business cluster gathers high tech SMEs of the Competitive Cluster Mov’eo.

End of the collaborative French research program SURVIE : Visibility Measurement (December 31, 2012)

NEXYAD was the head of a collaborative research program on visibility measurement, using the tool VisiNex.

This research program showed a complete correlation between VisiNex measurements and human panel of observers, and could develop new modules for VisiNex and new protocols of measurement.

Partners : NEXYAD, AXIMUM, VALEO, SAINT GOBAIN, IFFSTAR

Link: http://www.viameca.fr/assets/files/maj%20fiches%202012/04%20Fiche%205%20SIR%20Survie.pdf

Closing meeting of the collaborative research project SURVIE : 2012 June 28 in Paris (June 13, 2012)

The closing meeting of the collaborative research project SURVIE will take place the 28th of June 2012, in the Région Ile de France office in Paris.

SURVIE dealt with measurement of visibility during recovery (wipers, lights, demist, defrost, etc …). Measurement was performed using the onl device in the worl that can measure visibility for a human being ; VisiNex Developed par the company Nexyad.

The project gathered Saint Gobain, Valeo, CETE Lyon laboratory (Clermont Ferrand Lab), Oktal, Aximum, Nexyad.

Project Purpose: Research on the technical ways to improve or restore visibility to the driver, and development of new functionalities of VisiNex.

Several innovative measurement functionalities could be integrated to VisiNex by Nexyad, allowing partners to improve their understanding of visibility recovery in many cases of real world scenes.

This research program got the label of the French competitive cluster on automotive and transportation mov’eo.

New release of the NEXYAD VisiNex (May 10, 2012)

A new release of the NEXYAD VisiNex™ (*) tool is available and brings more functionalities : can deal with vibrations (due to artificial wind for instance), can deal with occultations (dirt, frost, …), geographical mapping of visibility (that lets show the dynamic of visibility recovery), measurements with the car lightning as light source.

(*) : visibility measurement for automotive and transportation applications : wipers, lightning, windshield, sign marks, …)

NEXYAD is involved in the collaborative research project RASSUR79 (January 15, 2012)

NEXYAD is involved in the collaborative research project RASSUR79 (competitive cluster moveo).

NEXYAD brings modules and knowledge on :

– Onboard road recognition

– Onboard visibility measurement

– Onboard accident risk assessment

The research and development work of NEXYAD in this program is helped by the Region Ile de France

Partners : CIVITEC, INTEMPORA, UMS-GAAS, UNILIM, UNIVERSITE RENNES 1, XLIM, VALEO

IdF
moveo


NEXYAD developed a new release of their VisiNex™ product (March 7, 2011)

NEXYAD developed a new release of their VisiNex™ product (visibility measurement using a camera) : new version can give local visibility scores and their distribution on the whole windshield of a car (applications are wipers efficiency enhancement and misting system efficiency measurement and enhancement for car industry).