NEXYAD Automotive & Transportation Newsletter #14, December 23th, 2016
Check NEXYAD Technologies for New Mobility Applications
Headlines :
– Demo video of SafetyNex : Smartphone App Onboard Real Time for Driving Risk Assessment
– Cercle LAB Symposium : new digital technologies for Insurance and Bank
– FinTech Community Symposium
– New Release of SafetyNex : Real Time Driving Risk Assessment for Car Industry and Insurance Companies
– Nexyad Technologies for Car Industry and New Mobility : SafetyNex – RoadNex – ObstaNex – VisiNex
– R&D project BIKER ANGEL (Driving Risk Assessment for Motorbikes) has been certified by the pôle FINANCE INNOVATION
– Business Trip to CES at Las Vegas
Les passions se déchaînent autour de la question des véhicules autonomes, ou semi-autonomes. Récemment, une personne a perdu la vie dans son véhicule TESLA alors qu’il était en mode auto-pilote.
NEXYAD a étudié la sécurité routière pendant une vingtaine d’année, et nous donnons quelques éléments de réflexion sur ce type d’accident.
Les chaînes de traitement de l’information des systèmes auto-pilote, driverless, etc… allant de la perception de l’environnement jusqu’à la prise de décision et à la gestion automatique des actionneurs, sont généralement très bien conçues, et mettent en œuvre des modules performants. Mais cela ne suffit pas à rendre nul le risque d’accident. En effet, pour traiter ce risque, il manque une chaîne parallèle (et indépendante) de « monitoring ».
C’est pour bien comprendre cette nécessité, il faut tout d’abord appréhender le niveau de complexité d’une scène routière vue par une caméra.
Processing circuit, informing auto-pilot systems, control, etc … from perception, data fusion, decision-making, and automatic control of actuators, are usually very well designed, and based on high-performance modules. But unfortunately, this is not enough to void the risk of accidents. Indeed, for the treatment of this risk, it lacks a parallel circuit (parallel and independent) called « monitoring » circuit.
To understand this need for a monitoring circuit, one must first understand the level of complexity of a road scene viewed from a camera.
The variability of road scenes is actually much more than what a normal person comes to imagine. Indeed, a color image, which has eight bits for each colors (then, 24-bit, as there are 3 colors) may encode 224 different color levels per pixel (more than 65,000 different possible values). HD video has more than 2 million pixels.
This means that the matrix of HD 8-bit color image may encode more than 65 0002 000 000 images !
This huge number is simply unimaginable.
NEXYAD will use a scale model car for ADAS and driverless software modules testing & validation.
Nexyad built their own intelligent scale model of car integrating a camera and telecommunications to a PC running the RT-MAPS framework (by INTEMPORA).
The PC runs real world detection software modules of NEXYAD into the framework RT-MAPS. Then the
scale model car can evoluate on a scale model landscape where it is easy to generate complex use cases
such as sun rising and other perturbations that are not easy to record in the real world and that are not that easy to simulate.
Beside, Nexyad built a testing and validation database that will represent thousands of million km of natural driving with the fewest number of vids as possible.
NB : this NEXYAD validation database will be available for free to every research and development team in the world on the NEXYAD web site.
This database will be used by NEXYAD of course to test and validate their own software modules for ADAS and Driverless cars :
. RoadNex for road detection
. ObstaNex for obstacles detection
. ObstaNex BiCam for obstacles detection using 2 cams
. VisiNex for visibility measurement
. SafetyNex for real time onboard risk assessment
This database is the result of a advanced methodology published in the 90’s by Nexyad Founder. The methodology « AGENDA » allows to build and validate camera-based complex detection and recognition systems (for ADAS and driverless cars).
This methodology was recently re-published and presented in different symposiums in Europe to show exactly how it may be used by car manufacturers and their OEMs.
Automotive Testing Expo Europe 2016 will take place at Stuttgart Messe May 31th, June 1er and 2nd.
This congress is huge and Nexyad will share the booth #1170 of Groupement ADAS (SME’s cluster) with Intempora and GlobalSensing Technologies.This venue is sponsorized by Moveo.
See in the planfloor below where to find NEXYAD which will present his three camera based onboard software : RoadNex for Road Detection, ObstaNex for Obstacle Detection and VisiNex for Visibility Measurement, and also our onboard software for measurement of risk in driving SafetyNex.
NEXYAD VisiNex Onboard v2.0 is now available on RT-Maps (by Intempora).
It comes with local Visual Quality Score (VQS) figured by colors :
Green is high, orange is medium, red is low.
See Demo film below on foggy weather condition :
NEXYAD has been starting the development of a data base for artificial vision-based ADAS test and validation.
This data base will be relevant and unique because it is fully decribed in two ways :
. reality : position of road and obstacles
. driving situation (i.e. curve in a foggy weather with pedestrian crossing, …) using the methology AGENDA.
To read more :
– « Methodology for ADAS validation: Potential Contribution of other Scientific Fields which have already answered the Same Questions »,
G. Yahiaoui, P. Da Silva Dias, proceedings of the 3rd CESA Automotive Electronics Congress May 2014 Paris, Lecture Notes in Mobility,
ENERGY CONSUMPTION AND AUTONOMOUS DRIVING, Jochen Langheim Ed, Springer, pp 133-138.
– « Validation of Advanced Driving Assistance Systems », G. Yahiaoui, N. du Lac, SafetyWeek congress, Aschaffenburg, May 2015.
Business details :
A part of this data base will be soon available for free on the internet, to the worldwide ADAS and Autonomous
vehicle community (labos and firms).
If you wish to receive the link as soon as it is available, click HERE and fill the registration form.
(Free access to the NEXYAD Artificial Vision-based ADAS Validation Database)
The complete data base should be available soon through an annual membership.
For more information : contact NEXYAD Olivier BENEL +33 139 04 13 60
* * * * *
ITS World Congress in Bordeaux
From 5 to 9 October, the ITS World Congress held in Bordeaux.
It is the world’s largest gathering on the subject of intelligent transport systems and numerous corporations and government agencies were present to discuss new technologies, communication and robotics which every day are revolutionizing commercial road transport, individual and collective.
From our point of view, three main domains distinguished themselves which are however increasingly closely intertwined: the vehicle, the infrastructure and information.
The most spectacular of them represented by the many autonomous vehicles that lined the stands or went in demo mode near the fairgrounds.
We noted a trend of convergence between the connected vehicle on one hand and adas in the other hand, all autonomous vehicles were also connected vehicles and communicating vehicles : car to x and x to car (especially radio link with fires and road signs.)
The AKKA link in city car without driver of the French IT company has rolled around the lake so the city. This electric car is the result of a call for projects from the agency for the development and innovation of the Aquitaine region and it uses open data from the city of Bordeaux and its neighbourhoods.
From Renault, we saw the Next Two a piloted car remotely by a tablet. It parked all alone with no one behind the wheel. We liked particulary that this functionality avoids a walking pedestrian crossing in front of the car. Then it returns to the starting point when you recall it, always from the tablet.
Moveo-Groupement ADAS is a cluster of 8 french SME’s that put their competence in common to develop autonomous car. They showed on their booth the demo car that has been made for ENSIAME University of Valenciennes, entirely robotised by FH Electronics. Nexyad designed the eyes of this car with his vision-based road detection system RoadNex that runs on the framework RT-Maps from Intempora. The other companies showed demos, products, and competence on detection, pattern recognition, eco-driving measurement, human factors, advanced engineering for autonomous cars.
PSA Peugeot Citröen showed on its stand several R & D results in progress (for example, a work in collaboration with Nexyad : a plateform for simulation Car Easy Apps or CASA) Several autonomous vehicles rolled in urban circuit.
VeDeCoM presented four autonomous vehicles driving around the lake near the Congress place on a 7km open track. These demonstrators, which are dual-mode vehicles (manual driving and driving delegation level 4), combine the French expertise, derived from the public-private partnership research on the autonomous vehicle. We appreciated a lot the capacity of those demo cars to pass all the difficulties of the city, including roundabouts with traffic which are one of the key problems of the automated driving.
Smartlane opens up your data silos and allows you to create a secure, accessible and integrated data hub. In this way your own data are carefully combined with external sources in order to provide comprehensive information value.
Valeo came also with an autonomous vehicle in demo on the road of Bordeaux : the Valeo Cruiser4U fitted with the valeo laser scanner and the valeo camera that uses Mobileye processor. This car was designed to scale in urban and suburban driving, it can change lane, reaching 130km/h.
Nexyad was present on two booth at ITS. « Moveo Groupement ADAS » one showing innovative technologies of perception with a suite of software modules RoadNex, single camera based detection of sides of the road and detection of the surface of the road ; ObstaNex, single camera based detection of obstacles on the road and on the sides of the road ; VisiNex onboard, camera based measurement of the visibility ; and SafetyNex, a world unique tool to estimate the risk/safe in driving 100% correlated with accidentology. Nexyad was also present on the PSA Peugeot Citröen booth with the FUI, Moveo labelised, research program CASA.
Citilog showed his incidents detection system on motorways, and management of intersections in cities based on proprietary camera technology. Citilog was on Moveo Groupement ITS Infra booth with other SME’s.
ST Microelectronics showcased next generation technologies for automotive applications, with a range of solutions including telematics, positioning, ADAS, digital radio, and sensors. We discovered his partner AutoTalks the pioneer and leader of the V2X Technology.
TomTom makes his navigation more and more precise and efficient. They have fully mapped in 3D the roads of Germany to render, in the future, automated driving possible, and they will do the rest of Europe before the world, they say.
Navya is an electric shuttle 100% French without driver that moves at low speed through an embedded robot and multi-sensor system. Designed for urban mobility, first for closed sites and latter for the first or the last kilometer of a journey, it can accommodate up to twenty passengers safely. Demo on a course in the city of Bordeaux.
Atlatec makes ground reality which is very valuable for validation of ADAS. Put their box in your car, calibrate it and run. Then it stores a mass of data and the software creates automatically high precision 3D maps of the environment with high resolution top view of the road.
Here presented high definition maps combined with cloud technology. The leader of navigation brings to the driver, real-time location experiences through of a broad range of connected devices from smartphones, tablets to wearables and vehicles; and always more informations like road surface horizon (slope/cant track).
On the ITS World Congress we could feel very clearly that car manufacturers, Tier One and Tier Two Companies, stakeholders in mobility, in general, (including many SMEs) have heavily invested on ADAS and autonomous vehicles. It leads to a multitude of very advanced exhibitions, and present or future availability of high performance sensors at low costs, with associated signal processing, which are also mature.
Nexyad tries Autonomous Vehicle by VeDeCom at ITS World in Bordeaux
* * * * *
Using Nexyad ADAS Modules for Autonomous Vehicle and Safety/Risk Estimation
by NEXYAD
INTRODUCTION
The company NEXYAD developped software modules for Advanced Driver Assistance Systems :
. RoadNex (Road detection) : lane detection, detection of the borderlines of drivable area in the lane, detection of the surface of drivable area in the lane.
Sensor : camera (color)
. ObstaNex (Obstacles detection) : obstacles detection (if they have a vertical dimension or – inclusive – if they have their own movement)
Sensor : camera (N&B or color), accel, gyro
. VisiNex onboard (weather visibility measurement) : visibility measurement (quality and distance)
Sensor : camera
. SafetyNex : onboard road safety / risk estimation
Sensor : navigation map, gps, accel or car speed
Those modules were made to develop very efficient ADAS.
There are many ways of comining those modules, depending on the function that should be developped.
LANE KEEPING AND AUTOMATIC BRAKING : FOR CAR MANUFACTURERS AND TIER ONE COMPANIES
For this function, modules may be integrated in a rather complex way :
Such an application needs to know where it works and where it doesn’t work (reliability). For that, VisiNex helps because it measures weather visibility and the nit is possible to know in which context artificial vision algorithms are efficient or not. It is also possible to switch setting parameters of artificial vision based algorithms using visibility characteristics, in order to expand the range of good performance of the global system (this is robustness).
NEXYAD applies a validation methodology called AGENDA (see papers in CESA Automotive 2014 in Paris and in SATETYWEEK 2015 in Aschaffenburg). This methodology is the onlt approach that allows to know what the system is supposed to do in a functional point of view, with measurable characterisctics of road scenes.
NEXYAD of course uses the NEXYAD ADAS validation data base : a part of this validation data base for artificial vision-based ADAS will be soon online for free (usable by every researcher or engineer in the world).
Note : the AGENDA methodology also provides a method to measure the similarity of a road scene in the validation data base anda current road scene : this is applied to estimate a confidence score.
SAFETY / RISK ESTIMATION FOR INSURANCE COMPANIES
SafetyNex measures the adequation of driving to road infrastructure characteristics.
It generates then a risk if the driver goes too fast when approaching a crossing road or a dangerous curve.
Of course, a poor visibility should lead the driver to drive slower.
In addition, there could be auxiliary inputs that would tell SafetyNex if there are obstacles on the pathway :
This scheme is the same than the previous one but the outputs of RoadNex and ObstaNex are used INSIDE the scheme (they don’t provide an output of the global scheme).
Measuring road safety in the context experienced by the driver is a topic of interest for several activities :
. car manufacturers, who can inform the driver of potential dangers
. autonomous vehicle developers who need to prove that the driving actually minimizes risk of accident.
. fleet managers and insurance companies who wish to measure the risk taken by drivers (how they drive)
. managers of road infrastructure that alway change infrastructure to adapt and lower the risk of accident
The company NEXYAD has been developing since 2001 an embedded onboard module, SafetyNex, to
estimate in real time the risk of accident.
PRECONCEIVED IDEAS ABOUT ROAD ACCIDENTS AND DRIVING STYLE
Many trials have been completed or in progress, particularly by insurance companies and fleet managers,
In order to measure what is called the « driving style ».
The assumption is that some drivers are more « nervous » than others, and that this has an impact on the accident: those that speed up or slow down quite often brutally would be « bad drivers » while those with a quieter driving style would be « good » drivers.
This assumption is contradicted by the facts. There is no statistical connection between the driving style and
the accident.
Formally, one can easily fancy very well that if a driver operates very quietly, without slowing, without
accelerating at 30 km / h, and if this driver passes through a stop road sign without braking … then the driving style is quiet but very accident-prone.
We then see that beyond the possible statistical link (that doesn’t exist), there can be no relationship of cause and effect.
All experiments that were conducted led to this result.
All those that will be conducted, based on more or less intelligent thresholding of the acceleration values are doomed to failure.
Do not confuse eco-driving and safe driving.
Driving style cannot be interpreted itself without context description :
. infrastructure shape and characteristic, on which the vehicle is traveling
. traffic (presence of other road users)
. weather conditions (visibility, grip, …)
. level of driver vigilance (distraction, drowsiness, sleep …)
NEXYAD has developed a scalable solution capable of taking into account all these factors.
SafetyNex is therefore able to estimate the risk of driving using all those variables.
Version 2.1 of SafetyNex, under deployment, takes into account the adequacy of driving style with the type and shape of infrastructure (breaks on route characteristics, turns, pedestrian crossings, intersections …).
This version has been intentionally reduced to « driving style vs infratructure characteristics », because it already gives a 90% correlation with accident and because this version is deployable at very low cost:
. on smart phone
. electronic device (developed by an automotive tier one company), without using the OBD socket)
CORRELATION OF RISK OF ACCIDENT ESTIMATED BY SafetyNex V2.1 AND ACCIDENT
NEXYAD participated in collaborative research programs since 2001, and worked then with experts from the road equipment.
In particular, SARI research program led to detecting what experts call « Break on the route characteristics ». For example, a turn with a big curve may be a danger when it arrives behind a long straight line, while the same curve will not be dangerous bend on a mountain road.
NEXYAD published a paper at the conference on road safety May 6, 2010 in Paris: PRAC 2010
Risk Prevention and Save The Conduct, Session 1 Characterization of road risk vs. infrastructure
« Evaluation du risque routier pour l’aide à la conduite ou le diagnostic de l’infrastructure », Johann Brunet, Pierre Da Silva Dias, Gérard Yahiaoui, PRAC 2010, Mai 2010, Paris.
The work that led to this publication were integrated in the available product SafetyNex. This means that by construction, the risk estimated by SafetyNex is correlated to the accident. This is true by construction, and NEXYAD conducted tests on roads, downtown, on motorways in urban areas, etc … and was able to validate this result.
PRINCIPLE OF SafetyNex V2.1
SafetyNet is a knowledge based system (expert system) which applies rules of the experts of the equipment.
These rules are stored in a rules data base in a mathematical form that can adapt to gradual actual characteristics of the infrastructure.
Required inputs are :
. the navigation map and the GPS: To examine the shape and type of the infrastructure located downstream of the vehicle (turns with their radius of curvature, points of interest like pedestrian crossing, crossroads, etc …)
. the instantaneous vehicle speed
From these two inputs, SafetyNex evaluates, by applying the rules, the adequacy of the driving speed of the vehicle to difficulty and danger of infrastructure.
A sporty driver accelerating hard, braking hard, but passing dangerous places at low speed will be scored with a low risk.
A quiet driver that passes through a stop road sing at 30 km / h without braking will be scored with a high risk.
A brutal braking cannot be considered as « bad driving » if it is necessary to avoid an accident …
We see then, that SafetyNex risk estimation is not correlated with the absolute value of acceleration, but with ACTUAL speed adaptation to difficulty and danger of the infrastructure, in real time.
Additional inputs (optional) are already scheduled, and can afford to modulate the estimated risk to increase acuracy of SafetyNex :
. grip (if one has a sensor to connect to the input provided for the purpose of SafetyNex)
. weather report (if one has the temporal and spatial information)
. atmospheric visibility (if one has adequate measure: example: a camera and the measuring module of atmospheric visibility : VisiNex)
. distance to potential obstacles (if it has an adequate sensor : eg radar, lidar, or camera with RoadNexObstaNex modules)
. a driver distraction factor (if the driver is observed with a camera and / or if one monitors the activity of mobile phone, etc …)
All these additional inputs are already ready to be used by SafetyNex but of course, they increase the cost of deployment, involving sensors (camera, …) and additional computing power before getting in SafetyNex to process signals and images from the optional sensors.
Using SafetyNex V2.1 with only the required inputs already allows a very high correlation of the estimated risk with the accident. We recommend to implement this version, already infinitely more effective than any other onboard measurements.
The interest of SafetyNex is that the future is already assured: Moore’s Law by rapidly lowering the cost of electronics and embedded computing, SafetyNex is ready to process the additional inputs, when users want to integrate cameras and sensors.
TYPICAL USES OF SafetyNet V2.1
. Insurance Companies:
– Pay how you drive
– Predictive modeling of bonus malus: the same accident under the same conditions does not lead to the same conclusions based on accumulated historical and recording the last seconds risk SafetyNex
– Generation of a dumb risk variable, correlated to the accident, to help actuaries refine pricing (big data)
. Fleet managers
. Automotive equipment suppliers:
– Alarm on risk
– Intelligent Navigation able to advise the driver
. Engineers and researchers from autonomous vehicle:
– Driving Quality Assessment generated by the robot
CONCLUSION
Embedded estimation of road risk of accident is now a problem completely solved by a product available for deployment, SafetyNex.
SafetyNex is deployable at Low cost on:
. mobile phones
. electronic device of a Automotive Tier 1 supplier (without plugging the OBD).
And SafetyNex already planned to integrate (once the cost is acceptable) grip sensors and cameras (for example) to estimate traffic and atmospheric visibility, as well as information such as weather and driver distraction.
All of these are already processed by SafetyNex rules based system, so that the tool can quickly evoluate with each decrease in the cost of sensor elements and cost of computing power needed to compute sensors outputs.
* * * * *
NEXYAD Automotive & Transportation in Media
« when the smartphone becomes a lookout driver »
« Autonomous car is a dream the French Automotive sector »
NEXYAD was compared to Mobileye and considered as a serious player in the competition.
In french magazine Le Journal de l’Automobile, pp 52-54, 18 Sept 2015
« MobilEye a de la concurrence : longtemps en position monopolistique, la société israélienne a désormais un
concurrent qui s’annonce sérieux dans le domaine des algorithmes de gestion des caméras embarquées, Nexyad.
Rencontre avec les ingénieurs français qui pourraient changer la donne »
USING NEXYAD ADAS MODULES FOR AUTONOMOUS VEHICLE AND SAFETY/RISK ESTIMATION
by NEXYAD
INTRODUCTION
The company NEXYAD developped software modules for Advanced Driver Assistance Systems :
. RoadNex (Road detection) : lane detection, detection of the borderlines of drivable area in the lane, detection of the surface of drivable area in the lane.
Sensor : camera (color)
. ObstaNex (Obstacles detection) : obstacles detection (if they have a vertical dimension or – inclusive – if they have their own movement)
Sensor : camera (N&B or color), accel, gyro
. VisiNex onboard (weather visibility measurement) : visibility measurement (quality and distance)
Sensor : camera
. SafetyNex : onboard road safety / risk estimation
Sensor : navigation map, gps, accel or car speed
Those modules were made to develop very efficient ADAS.
There are many ways of comining those modules, depending on the function that should be developped.
LANE KEEPING AND AUTOMATIC BRAKING : FOR CAR MANUFACTURERS AND TIER ONE COMPANIES
For this function, modules may be integrated in a rather complex way :
Such an application needs to know where it works and where it doesn’t work (reliability). For that, VisiNex helps because it measures weather visibility and the nit is possible to know in which context artificial vision algorithms are efficient or not. It is also possible to switch setting parameters of artificial vision based algorithms using visibility characteristics, in order to expand the range of good performance of the global system (this is robustness).
NEXYAD applies a validation methodology called AGENDA (see papers in CESA Automotive 2014 in Paris and in SATETYWEEK 2015 in Aschaffenburg). This methodology is the onlt approach that allows to know what the system is supposed to do in a functional point of view, with measurable characterisctics of road scenes.
NEXYAD of course uses the NEXYAD ADAS validation data base : a part of this validation data base for artificial vision-based ADAS will be soon online for free (usable by every researcher or engineer in the world).
Note : the AGENDA methodology also provides a method to measure the similarity of a road scene in the validation data base anda current road scene : this is applied to estimate a confidence score.
SAFETY / RISK ESTIMATION FOR INSURANCE COMPANIES
SafetyNex measures the adequation of driving to road infrastructure characteristics.
It generates then a risk if the driver goes too fast when approaching a crossing road or a dangerous curve.
Of course, a poor visibility should lead the driver to drive slower.
In addition, there could be auxiliary inputs that would tell SafetyNex if there are obstacles on the pathway :
This scheme is the same than the previous one but the outputs of RoadNex and ObstaNex are used INSIDE the scheme (they don’t provide an output of the global scheme).
ITS World in Bordeaux has been a very intense week for MOVEO – Groupement ADAS specially for NEXYAD that received a lot’s of visits. Congress’s persons from everywhere in the world came to see our demos of road detection, obstacles detection, visibility measurement, estimation of risk for the driver in his environment, etc…
Visibility is one of the structural elements of road safety. Indeed, the sense of sight is the only one that let us perceived the future path of the vehicle and then let us act on it : the driver « can see » in front of the vehicle, he predicts where the vehicle will go, and he can act on the controls (brake, steering wheel, …) in order to control the trajectory.
No other way allows us to anticipate.
If we model the task of driving with an automatic control engineering scheme, then we can notice that vision is used quite everywhere :
Vision plays a critical role in driving task, and what sizes the efficiency of this sense is « visibility ».
Visibility can be affected by many kinds of factors:
. the absence or insufficience of light (that is why the infrastructure is sometimes illuminated at night, and why vehicles are equipped with lighting.
. rain deposited on the windshield (that is why vehicles are equipped with wipers)
. mist on the windshield (that is why vehicles are equipped with demisting systems)
. humidity, fog or mist suspended in the air in the road scene.
Experts of road infrastructure add elements to enhance the visibility of the path :
. lane markings (white lines), reflective elements.
Similarly, automobile experts equip their vehicle with systems enabling them to improve visibility for the driver, but also allowing the vehicle to be more easily seen by other drivers.
We then understand that measurement of visibility is an important area of potential improvement of road safety in via ADAS.
VISIBILITY MEASUREMENT
The founders of the company NEXYAD have been working since the 80s on the measurement of visibility, early on military applications.
Indeed, it is the military who have studied since the 60’s which criteria allow human visual perception system to detect objects on their clutter.
For the military, the constant search for stealth (camouflage, for example) requires modeling the performance of the detection by human, depending on the light of a scene in the visible wavelength.
The work carried out tests on panels of thousands of soldiers, and led to predictive models for human vision of the ability to detect objects or not, depending on the image quality.
NEXYAD is one of the very few companies in the world to hold these models and have experience of their implementation for more than 20 years.
In simplified terms, we can consider that our eyes and brain need, depending on the size of the objects to be detected, a different contrast level.
We can then compare the contrast available in a scene (eg a road scene) with needed contrast to detect, , for each size of objects.
The comparison results in two scores :
. the apparent size of the smallest detectable object : as the apparent size of an object decreases with distance, it can then be deduced the maximum distance of detection for a reference object (a car, a truck, a pedestrian). Distances will obviously be different for every object because they don’t have the same size. Johnson criteria give let also estimate the maximum distance for object recognition, and the maximum distance for object identification.
. ease of interpretation of the visual scene. NEXYAD summarized this in a score computed from available and needed contrast: the Visual Quality Score (VQS).
This measure of visibility enables automotive application objectify the subjective. NEXYAD has developed two product lines from the same technology :
Place a vehicle on a test bench and VisiNex Lab measuring visibility among time. If there are disturbs of visibility from rain, for example (using NEXYAD RainNex rain machine, or another rain machine), then we see scores for degraded visibility. If one starts the vehicle visibility restoration systems (eg in the case where the disturbance is the rain : the wipers), then we measure the performance of the visibility restoration.
VisiNex Lab is used by the automotive industry and is still the only tool for measuring the performance of wipers, demisting system, lighting system, …
. an embedded module for ADAS : VisiNex Onboard https://nexyad.net/Automotive-Transportation/?page_id=438
VisiNex Onboard measures the image quality and predicts the detection power of the driver and onboard artificial vision modules. So we get a rating of confidence for artificial vision systems.
Again, NEXYAD is the only non military company to dispose of this technology.
CONCLUSION
Every tier one company or car manufacturer should use NEXYAD modules VisiNex in order to measure performance, robustness, and reliability of their wipers, lighting, and of their camera-based ADAS.
VisiNex Onboard is currently under implementation into the asynchronous real time framework RT-MAPS.
Visibility measurement for ADAS and Autonomous Vehicle
By NEXYAD
Advanced Driver Assistance Systems (ADAS), and partial or total delegation of car control systems will integrate more and more cameras. Those cameras are used to capture video and images are inputs for obstacle detection algorithms, road detection algorithms, detection of pedestrians systems, …
However, a camera can « see » only under certain conditions, and the algorithms used to exploit image need a certain level of image quality. It is possible that some algorithms test themselves if they are in a case of good image quality or not, but in the general case, they don’t, and it is then prudent to have a qualification system that is independent of the detection systems.
The company NEXYAD has worked for years on atmospheric visibility measurement for military application, and was able to develop predictive models of the ability for a human to detect objects. This work can be easily set to pass from a performance prediction of the human vision to a prediction of performance for a machine vision system.
The models consist in comparing the contrast in the scene with the required contrast for detection and / or pattern recognition.
Such a system requires that is respected a compromise between several characteristics of the image:
. number of different gray levels (for a digital camera, it depends on the number of bits)
. size of the objects to be detected
. contrast of objects from their background
Note for Automotive engineers : a performance specification for a camera-based detection system, without giving the minimum contrast, le maximum number of pixels, the number of bits … does NOT have any sense. It is important to know that fact in order to make applications that work and application that know when they work.
For instance, we are all able to detect stars in a dark night sky : the size of objects is very small, the number of Grayscale is very low (pure black and pure white), and the contrast of objects from the background is huge.
Similarly, we are able to distinguish clouds over gray sky : the size of objects is very large, and even on edges there is no detail (no high frequency / contours), and the number of different gray levels is very large (gradual grey scale from black to white).
Between these two extremes are all possible cases, and in particular with all traffic scenes that may vary greatly from one to another :
. sunny day, overcast day, dark night, undergrowth, sunset, night in headlights, fog, rain, etc …
In addition to these technical compromise, there are criteria (eg criteria Johnson) that allow to objectify the subjective.
NEXYAD has developed a tool called VisiNex that integrates models and criteria described above, which led to two products:
. VisiNex Lab : test bench for visibility measurement. It sets a vehicle with calibrated visibility disturbances (rain machine, fog machine, …), and VisiNex Lab measures the evolution of the available visibility during the disturbance and during activation of visibility restoration systems (lighting, demisting, wiping, …).
VisiNex Lab is used to adjust the rain sensors, the wiper systems, the lighting systems. VisiNex is a world leader on this type of use : https://nexyad.net/Automotive-Transportation/?page_id=159
. VisiNex Onboard : NEXYAD took his model into onboard applications to apply and qualify road visibility along the route running (important place to qualify for the road safety applications).
VisiNex Onboard is currently being integrated into the framework for asynchronous real-time applications development RT-MAPS, and will soon be in the NEXYAD vision modules pack for ADAS and driving delegation applications.
Standard visibility on a highway scene. Degraded visibility when approaching a tunnel
VisiNex Onboard can be used in automotive application on the following topics :
. visibility measurement to control Visibility restoration systems (wiper, lighting, …)
. qualification of visibility conditions where an obstacle detection or road detection system will work properly.
The second point is important because road safety applications require to maximize the reliability of vision systems.
NEXYAD Automotive & Transportation will be present in Bordeaux for ITS World Congress. On the french R&D competitiveness cluster MOV’EO’s « Groupement ADAS » booth.
At the safety week symposium in Aschaffenburg (Germany), NEXYAD presented :
. A paper about ADAS validation : methodology and tools
. The products on the booth : RoadNex (road detection), ObstaNex (Obstacles detection), VisiNex Onboard (visibility measurement), SafetyNex (estimating safety level of driving).
Those software blocs are available as user licences for research (autonomous vehicles and adas demo cars, …) as dll for windows or as RT-MAPS components.
NEXYAD also takes into account opportunities to embed those blocs into your ADAS systems for new vehicles or as after market solutions in your distribution network.
NEXYAD will meet main car manufacturers and techno providers in Germany (mission of UbiFrance). This participation was made possible by the intervention of Mov’eo Groupements.
NEXYAD will present :
– The worldwide reference for testing visibility (efficiency of wipers, lighting, demist, defrost, …) : VisiNex
The project SURVIE was headed by NEXYAD with the research partners AXIMUM, CETE, IFSTTAR, OKTAL, SAINT GOBAIN, VALEO.
The goal of this project was to validate standard measurement protocols for different testing usages of the test bench tool VisiNex (developed by NEXYAD : click HERE to know more) : measurement of the performance of every system in a car that was made to restore visibility : lighting, wipers, demist, defrost, hydrophobic windshield, …
SURVIE was a collaborative research program of the competitive cluster Mov’eo.
We use cookies to understand how you use our site and to improve your experience. By continuing to use our site, you accept our use of cookies. AcceptPrivacy & Cookies Policy Read More
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.